Multiframe image estimation for coded aperture snapshot spectral imagers.

Abstract

A coded aperture snapshot spectral imager (CASSI) estimates the three-dimensional spatiospectral data cube from a snapshot two-dimensional coded projection, assuming that the scene is spatially and spectrally sparse. For less spectrally sparse scenes, we show that the use of multiple nondegenerate snapshots can make data cube recovery less ill-posed, yielding improved spatial and spectral reconstruction fidelity. Additionally, data acquisition can be easily scaled to meet the time/resolution requirements of the scene with little modification or extension of the original CASSI hardware. A multiframe reconstruction of a 640 × 480 × 53 voxel datacube with 450-650 nm white-light illumination of a scene reveals substantial improvement in the reconstruction fidelity, with limited increase in acquisition and reconstruction time.

DOI
10.1364/ao.49.006824
Year