Design and scaling of monocentric multiscale imagers.

Abstract

Monocentric multi-scale (MMS) lenses are a new approach to high-resolution wide-angle imaging, where a monocentric objective lens is shared by an array of identical rotationally symmetric secondary imagers that each acquire one overlapping segment of a mosaic. This allows gigapixel images to be computationally integrated from conventional image sensors and relatively simple optics. Here we describe the MMS design space, introducing constraints on image continuity and uniformity, and show how paraxial system analysis can provide both volume scaling and a systematic design methodology for MMS imagers. We provide the detailed design of a 120° field of viewimager (currently under construction) resolving 2 gigapixels at 41.5 μrad instantaneous field of view, and demonstrate reasonable agreement with the first-order scaling calculation.

DOI
10.1364/ao.51.004691
Year