Reconstruction of reflectance spectra using robust nonnegative matrix factorization

Abstract

In this correspondence, we present a robust statistics-based nonnegative matrix factorization (RNMF) approach to recover the measurements in reflectance spectroscopy. The proposed algorithm is based on the minimization of a robust cost function and yields two equations updated alternatively. Unlike other linear representations, such as principal component analysis, the RNMF technique is resistant to outliers and generates nonnegative-basis functions, which balance the logical attractiveness of measurement functions against their physical feasibility. Experimental results on a spectral library of reflectance spectra are presented to illustrate the much improved performance of the RNMF approach. © 2006 IEEE.

DOI
10.1109/TSP.2006.879282
Year